Circle Squaring with Pieces of Small Boundary and Low Borel Complexity

Oleg Pikhurko
University of Warwick

Joint work with András Máthé and Jonathan A. Noel

Introducion

Introducion

- Gábor's talk from yesterday

Introducion

- Gábor's talk from yesterday
- Proof:

Equidecomposability

Equidecomposability

- $A, B \subseteq \mathbb{R}^{k}$ are equidecomposable $(A \sim B)$:

Equidecomposability

- $A, B \subseteq \mathbb{R}^{k}$ are equidecomposable $(A \sim B)$:

$$
\text { - } \exists A=A_{1} \sqcup \ldots \sqcup A_{n}
$$

Equidecomposability

- $A, B \subseteq \mathbb{R}^{k}$ are equidecomposable $(A \sim B)$:

$$
\begin{aligned}
& \Rightarrow \exists A=A_{1} \sqcup \ldots \sqcup A_{n} \\
& \qquad \exists B=B_{1} \sqcup \ldots \sqcup B_{n}
\end{aligned}
$$

Equidecomposability

- $A, B \subseteq \mathbb{R}^{k}$ are equidecomposable $(A \sim B)$:

$$
\begin{aligned}
& \qquad \exists A=A_{1} \sqcup \ldots \sqcup A_{n} \\
& >\exists B=B_{1} \sqcup \ldots \sqcup B_{n} \\
& \text { st } \forall i \exists \text { isometry } \gamma_{i} \text { with } B_{i}=\gamma_{i}\left(A_{i}\right)
\end{aligned}
$$

Paradoxes and finitely-additive means

Paradoxes and finitely-additive means

- Banach-Tarski'24: $k \geqslant 3, A, B \subseteq \mathbb{R}^{k}$, bounded, non-empty interior $\Rightarrow A \sim B$

Paradoxes and finitely-additive means

- Banach-Tarski'24: $k \geqslant 3, A, B \subseteq \mathbb{R}^{k}$, bounded, non-empty interior $\Rightarrow A \sim B$
- \Rightarrow Every finitely-additive isometry-invariant mean on all bounded subsets of $\mathbb{R}^{k}, k \geqslant 3$, is zero

Paradoxes and finitely-additive means

- Banach-Tarski'24: $k \geqslant 3, A, B \subseteq \mathbb{R}^{k}$, bounded, non-empty interior $\Rightarrow A \sim B$
- \Rightarrow Every finitely-additive isometry-invariant mean on all bounded subsets of $\mathbb{R}^{k}, k \geqslant 3$, is zero
- Hausdorff 1914: paradoxes on sphere $\mathbb{S}^{k-1}, k \geqslant 3$

Paradoxes and finitely-additive means

- Banach-Tarski'24: $k \geqslant 3, A, B \subseteq \mathbb{R}^{k}$, bounded, non-empty interior $\Rightarrow A \sim B$
- \Rightarrow Every finitely-additive isometry-invariant mean on all bounded subsets of $\mathbb{R}^{k}, k \geqslant 3$, is zero
- Hausdorff 1914: paradoxes on sphere $\mathbb{S}^{k-1}, k \geqslant 3$
- Axiom of Choice

Paradoxes and finitely-additive means

- Banach-Tarski'24: $k \geqslant 3, A, B \subseteq \mathbb{R}^{k}$, bounded, non-empty interior $\Rightarrow A \sim B$
- \Rightarrow Every finitely-additive isometry-invariant mean on all bounded subsets of $\mathbb{R}^{k}, k \geqslant 3$, is zero
- Hausdorff 1914: paradoxes on sphere $\mathbb{S}^{k-1}, k \geqslant 3$
- Axiom of Choice
- "Constructive" equidecompositions?

Baire equidecompositions

Baire equidecompositions

- $\mathcal{T}:=\{$ Baire measurable sets $\}$

Baire equidecompositions

- $\mathcal{T}:=\{$ Baire measurable sets $\}$
- Dougherty-Foreman'92: $k \geqslant 3, A, B \in \mathcal{T}\left(\mathbb{R}^{k}\right)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$

Baire equidecompositions

- $\mathcal{T}:=\{$ Baire measurable sets $\}$
- Dougherty-Foreman'92: $k \geqslant 3, A, B \in \mathcal{T}\left(\mathbb{R}^{k}\right)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- \Rightarrow Every finitely-additive isometry-invariant mean on $\left\{X \in \mathcal{T}\left(\mathbb{R}^{k}\right)\right.$: bounded $\}, k \geqslant 3$, is zero

Baire equidecompositions

- $\mathcal{T}:=\{$ Baire measurable sets $\}$
- Dougherty-Foreman'92: $k \geqslant 3, A, B \in \mathcal{T}\left(\mathbb{R}^{k}\right)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- \Rightarrow Every finitely-additive isometry-invariant mean on $\left\{X \in \mathcal{T}\left(\mathbb{R}^{k}\right)\right.$: bounded $\}, k \geqslant 3$, is zero
- Resolved Marczewski Problem'30

Baire equidecompositions

- $\mathcal{T}:=\{$ Baire measurable sets $\}$
- Dougherty-Foreman'92: $k \geqslant 3, A, B \in \mathcal{T}\left(\mathbb{R}^{k}\right)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- \Rightarrow Every finitely-additive isometry-invariant mean on $\left\{X \in \mathcal{T}\left(\mathbb{R}^{k}\right)\right.$: bounded $\}, k \geqslant 3$, is zero
- Resolved Marczewski Problem'30
- Marks-Unger'16: simpler proof

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1$ ($\lambda:=$ the Lebesgue measure $)$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1$ ($\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1$ ($\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1$ ($\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \geqslant 3$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1$ ($\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \geqslant 3$
- \Rightarrow Margulis'82 (Banach-Ruziewicz Problem):
\forall isometry-invariant finitely-additive mean on $\mathcal{L} \cap\{$ bounded $\}$ is Constant $\cdot \lambda$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1 \quad(\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \geqslant 3$
- \Rightarrow Margulis'82 (Banach-Ruziewicz Problem):
\forall isometry-invariant finitely-additive mean on
$\mathcal{L} \cap\{$ bounded $\}$ is Constant $\cdot \lambda$
- Grabowski-Máthé-P.'22: \forall isometry-invariant fin-additive mean on $\mathcal{L} \cap \mathcal{T} \cap\{$ bounded $\}$ is Constant $\cdot \lambda$

Lebesgue measurable pieces in $\mathbb{R}^{k}, k \geqslant 3$

- $\mathcal{L}:=\{$ Lebesgue measurable sets $\}$
- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- $A \in \mathcal{L}$
- $\lambda(A)=1 \quad(\lambda:=$ the Lebesgue measure $)$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \geqslant 3$
- \Rightarrow Margulis'82 (Banach-Ruziewicz Problem):
\forall isometry-invariant finitely-additive mean on
$\mathcal{L} \cap\{$ bounded $\}$ is Constant $\cdot \lambda$
- Grabowski-Máthé-P.'22: \forall isometry-invariant fin-additive mean on $\mathcal{L} \cap \mathcal{T} \cap\{$ bounded $\}$ is Constant $\cdot \lambda$
- Open: Analogous results for the Borel σ-algebra \mathcal{B}
\mathbb{R}^{k} with $k \leqslant 2$

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
- von Neumann'29: Yes, with affine transformations

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
- von Neumann'29: Yes, with affine transformations
- Dubins-Hirsh-Karush'63: No, with scissor congruence

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
- von Neumann'29: Yes, with affine transformations
- Dubins-Hirsh-Karush'63: No, with scissor congruence
- Gardner'85: No, with a discrete subgroup of Iso($\left.\mathbb{R}^{2}\right)$

\mathbb{R}^{k} with $k \leqslant 2$

- Banach'23: $A \sim B, A, B \in \mathcal{L} \Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
- von Neumann'29: Yes, with affine transformations
- Dubins-Hirsh-Karush'63: No, with scissor congruence
- Gardner'85: No, with a discrete subgroup of Iso($\left.\mathbb{R}^{2}\right)$
- Laczkovich'90: YES, using translations only

Upper Minkowski (box) dimension in \mathbb{R}^{k}

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

$-\operatorname{dim}_{\square} X:=\limsup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

$-\operatorname{dim}_{\square} X:=\limsup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$
- Minimum d s.t. $N_{\varepsilon}(X) \leqslant(1 / \varepsilon)^{d+o(1)}$ as $\varepsilon \rightarrow 0$

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

- $\operatorname{dim}_{\square} X:=\limsup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$
- Minimum d s.t. $N_{\varepsilon}(X) \leqslant(1 / \varepsilon)^{d+o(1)}$ as $\varepsilon \rightarrow 0$
- E.g. $\operatorname{dim}_{\square} \partial \mathbb{B}^{2}=1$

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

$-\operatorname{dim}_{\square} X:=\limsup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$
- Minimum d s.t. $N_{\varepsilon}(X) \leqslant(1 / \varepsilon)^{d+o(1)}$ as $\varepsilon \rightarrow 0$
- E.g. $\operatorname{dim}_{\square} \partial \mathbb{B}^{2}=1$
- Box: $\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{k}, b_{k}\right)$

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

- $\operatorname{dim}_{\square} X:=\limsup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$
- Minimum d s.t. $N_{\varepsilon}(X) \leqslant(1 / \varepsilon)^{d+o(1)}$ as $\varepsilon \rightarrow 0$
- E.g. $\operatorname{dim}_{\square} \partial \mathbb{B}^{2}=1$
- Box: $\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{k}, b_{k}\right)$
- $\operatorname{dim}_{\square} \partial X<k-c \Rightarrow$ well approximated by boxes

Upper Minkowski (box) dimension in \mathbb{R}^{k}

- $N_{\varepsilon}(X):=\#$ of ε-grid cubes intersecting X

$-\operatorname{dim}_{\square} X:=\lim \sup _{\varepsilon \rightarrow 0} \frac{\log \left(N_{\varepsilon}(X)\right)}{\log (1 / \varepsilon)}$
- Minimum d s.t. $N_{\varepsilon}(X) \leqslant(1 / \varepsilon)^{d+o(1)}$ as $\varepsilon \rightarrow 0$
- E.g. $\operatorname{dim}_{\square} \partial \mathbb{B}^{2}=1$
- Box: $\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{k}, b_{k}\right)$
- $\operatorname{dim}_{\square} \partial X<k-c \Rightarrow$ well approximated by boxes
- $\exists K \subseteq X \subseteq U$ with $\lambda(U \backslash K)<\varepsilon$, using $O\left(\varepsilon^{c-k}\right)$ boxes

More general result by Laczkovich

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$
- $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k$

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$
- $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k$
- $\lambda(A)=\lambda(B)>0$

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$
- $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k$
- $\lambda(A)=\lambda(B)>0$
$\Rightarrow A \sim B$, using translations only

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$
- $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k$
- $\lambda(A)=\lambda(B)>0$
$\Rightarrow A \sim B$, using translations only
- Axiom of Choice

More general result by Laczkovich

- Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$
- $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k$
- $\lambda(A)=\lambda(B)>0$
$\Rightarrow A \sim B$, using translations only
- Axiom of Choice
- "Constructive" equidecomposition?

Constructive versions (using translations)

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{E} \cap \mathcal{T}} B$

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial \boldsymbol{A}, \operatorname{dim}_{\square} \partial \boldsymbol{B}<\boldsymbol{k}, \lambda(\boldsymbol{A})=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial \boldsymbol{A}, \operatorname{dim}_{\square} \partial \boldsymbol{B}<\boldsymbol{k}, \lambda(\boldsymbol{A})=\lambda(\boldsymbol{B})>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial \boldsymbol{A}, \operatorname{dim}_{\square} \partial \boldsymbol{B}<\boldsymbol{k}, \lambda(\boldsymbol{A})=\lambda(\boldsymbol{B})>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with
$-\operatorname{dim}_{\square} \partial A_{i}<k$

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with
- $\operatorname{dim}_{\square} \partial A_{i}<k$
- $A_{i} \in \boldsymbol{B}(\boldsymbol{\Sigma}(\boldsymbol{B}($ boxes $\&$ translates of A and $B)))$

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with
$-\operatorname{dim}_{\square} \partial A_{i}<k$
- $A_{i} \in \boldsymbol{B}(\boldsymbol{\Sigma}(\boldsymbol{B}($ boxes $\&$ translates of A and $B)))$
- Σ : countable unions

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with
$-\operatorname{dim}_{\square} \partial A_{i}<k$
- $A_{i} \in \boldsymbol{B}(\boldsymbol{\Sigma}(\boldsymbol{B}($ boxes $\&$ translates of A and $B)))$
- Σ : countable unions
- B: Boolean combinations

Constructive versions (using translations)

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^{k}, k \geqslant 1$, $\operatorname{dim}_{\square} \partial A, \operatorname{dim}_{\square} \partial B<k, \lambda(A)=\lambda(B)>0$
- Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' $\geqslant 23$, Bowen-Kun-Sabok' $\geqslant 23$: new proofs / generalisations
- Máthé-Noel-P. $\geqslant 23: A \sim B$ with
$-\operatorname{dim}_{\square} \partial A_{i}<k$
- $A_{i} \in \boldsymbol{B}(\boldsymbol{\Sigma}(\boldsymbol{B}($ boxes $\&$ translates of A and $B)))$
- Σ : countable unions
- B: Boolean combinations
- \Rightarrow Circle squaring with $\operatorname{dim}_{\square} \partial A_{i}<1.987$ and $A_{i} \in \boldsymbol{B}\left(F_{\sigma}\right.$-sets)

Sets with small boundary

Sets with small boundary

- $x \subseteq[0,1)^{k}$

Sets with small boundary

- $X \subseteq[0,1)^{k}$
- $\operatorname{dim}_{\square} \partial X<k \Rightarrow X$ is Jordan measurable

Sets with small boundary

- $X \subseteq[0,1)^{k}$
- $\operatorname{dim}_{\square} \partial X<k \Rightarrow X$ is Jordan measurable
- X is Jordan measurable: $\mathbb{1}_{X}$ is Riemann integrable

Sets with small boundary

- $X \subseteq[0,1)^{k}$
- $\operatorname{dim}_{\square} \partial X<k \Rightarrow X$ is Jordan measurable
- X is Jordan measurable: $\mathbb{1}_{X}$ is Riemann integrable
- $\Leftrightarrow X$ cuts $o\left(n^{k}\right)$ cubes of the $\frac{1}{n}$-grid on $[0,1)^{k}$

Sets with small boundary

- $X \subseteq[0,1)^{k}$
- $\operatorname{dim}_{\square} \partial X<k \Rightarrow X$ is Jordan measurable
- X is Jordan measurable: $\mathbb{1}_{X}$ is Riemann integrable
- $\Leftrightarrow X$ cuts $o\left(n^{k}\right)$ cubes of the $\frac{1}{n}$-grid on $[0,1)^{k}$
$-\operatorname{dim}_{\square} \partial X \leqslant k-c \Rightarrow$ cuts $\leqslant n^{k-c+o(1)}$ cubes

Sets with small boundary

- $X \subseteq[0,1)^{k}$
- $\operatorname{dim}_{\square} \partial X<k \Rightarrow X$ is Jordan measurable
- X is Jordan measurable: $\mathbb{1}_{X}$ is Riemann integrable
- $\Leftrightarrow X$ cuts $o\left(n^{k}\right)$ cubes of the $\frac{1}{n}$-grid on $[0,1)^{k}$
$-\operatorname{dim}_{\square} \partial X \leqslant k-c \Rightarrow$ cuts $\leqslant n^{k-c+o(1)}$ cubes
- Algebras but not σ-algebras

Equidecompositions via graph matching

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$
- $E:=\left\{x y \in A \times B: \exists i \gamma_{i}(x)=y\right\}$

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$
- $E:=\left\{x y \in A \times B: \exists i \gamma_{i}(x)=y\right\}$

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$
- $E:=\left\{x y \in A \times B: \exists i \gamma_{i}(x)=y\right\}$

- Matching $\mathcal{M} \subseteq E \Longleftrightarrow$ disjoint $A_{1}, \ldots, A_{n} \subseteq A$ s.t. $\gamma_{1}\left(A_{1}\right), \ldots, \gamma_{n}\left(A_{n}\right) \subseteq B$ are disjoint

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$
- $E:=\left\{x y \in A \times B: \exists i \gamma_{i}(x)=y\right\}$

- Matching $\mathcal{M} \subseteq E \Longleftrightarrow$ disjoint $A_{1}, \ldots, A_{n} \subseteq A$ s.t. $\gamma_{1}\left(A_{1}\right), \ldots, \gamma_{n}\left(A_{n}\right) \subseteq B$ are disjoint
- \exists perfect matching $\Rightarrow A \sim B$

Choosing translations

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$
- Schreier graph of $\mathbb{Z}^{d} \curvearrowright \mathbb{T}^{k}$ wrt $\{-1,0,1\}^{d}$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$
- Schreier graph of $\mathbb{Z}^{d} \curvearrowright \mathbb{T}^{k}$ wrt $\{-1,0,1\}^{d}$
- Components of $\mathcal{G}:\left(3^{d}-1\right)$-regular copies of \mathbb{Z}^{d}

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$
- Schreier graph of $\mathbb{Z}^{d} \curvearrowright \mathbb{T}^{k}$ wrt $\{-1,0,1\}^{d}$
- Components of $\mathcal{G}:\left(3^{d}-1\right)$-regular copies of \mathbb{Z}^{d}
- Aim: Bijection $\phi: A \rightarrow B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leqslant M$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$
- Schreier graph of $\mathbb{Z}^{d} \curvearrowright \mathbb{T}^{k}$ wrt $\{-1,0,1\}^{d}$
- Components of $\mathcal{G}:\left(3^{d}-1\right)$-regular copies of \mathbb{Z}^{d}
- Aim: Bijection $\phi: A \rightarrow B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leqslant M$
- $\mathcal{V}:=\left\{n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}: \mathbf{n} \in\{-M, \ldots, M\}^{d}\right\}$

Choosing translations

- Work on the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Fix (large) integer $d=d(A, B)$
- Random $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Large $M=M\left(A, B, \mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)$
- $\mathcal{G}:=\left(\mathbb{T}^{k},\left\{\left\{\mathbf{u}, \mathbf{u}+n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}\right\}: \mathbf{n} \in\{-1,0,1\}^{d}\right\}\right)$
- Schreier graph of $\mathbb{Z}^{d} \curvearrowright \mathbb{T}^{k}$ wrt $\{-1,0,1\}^{d}$
- Components of $\mathcal{G}:\left(3^{d}-1\right)$-regular copies of \mathbb{Z}^{d}
- Aim: Bijection $\phi: A \rightarrow B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leqslant M$
- $\mathcal{V}:=\left\{n_{1} \mathbf{x}_{1}+\ldots+n_{d} \mathbf{x}_{d}: \mathbf{n} \in\{-M, \ldots, M\}^{d}\right\}$
- Number of parts $N:=|\mathcal{V}|=(2 M+1)^{d}$

Local picture for $d=2$ and $M=2$

Local picture for $d=2$ and $M=2$

Discrepancy bounds by Laczkovich'92

Discrepancy bounds by Laczkovich'92

- X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||X \cap Q|-\lambda(X) \ell^{d}\right| \leqslant C \log ^{k+d+1} \ell
$$

Discrepancy bounds by Laczkovich'92

- X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||X \cap Q|-\lambda(X) \ell^{d}\right| \leqslant C \log ^{k+d+1} \ell
$$

- $\operatorname{dim}_{\square} A<k \Rightarrow$ a.e. $\mathbf{x} \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||A \cap Q|-\lambda(A) \ell^{d}\right| \leqslant \ell^{(1-\Omega(1)) d} \leqslant \ell^{d-1-\Omega(1)}
$$

Discrepancy bounds by Laczkovich'92

- X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||X \cap Q|-\lambda(X) \ell^{d}\right| \leqslant C \log ^{k+d+1} \ell
$$

- $\operatorname{dim}_{\square} A<k \Rightarrow$ a.e. $\mathbf{x} \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||A \cap Q|-\lambda(A) \ell^{d}\right| \leqslant \ell^{(1-\Omega(1)) d} \leqslant \ell^{d-1-\Omega(1)}
$$

- \Rightarrow Hall's marriage condition

Discrepancy bounds by Laczkovich'92

- X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||X \cap Q|-\lambda(X) \ell^{d}\right| \leqslant C \log ^{k+d+1} \ell
$$

- $\operatorname{dim}_{\square} A<k \Rightarrow$ a.e. $\mathbf{x} \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||A \cap Q|-\lambda(A) \ell^{d}\right| \leqslant \ell^{(1-\Omega(1)) d} \leqslant \ell^{d-1-\Omega(1)}
$$

- \Rightarrow Hall's marriage condition
- Rado'49: \exists perfect matching

Discrepancy bounds by Laczkovich'92

- X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||X \cap Q|-\lambda(X) \ell^{d}\right| \leqslant C \log ^{k+d+1} \ell
$$

- $\operatorname{dim}_{\square} A<k \Rightarrow$ a.e. $\mathbf{x} \forall$ discrete ℓ-cube Q in \mathcal{G}

$$
\left||A \cap Q|-\lambda(A) \ell^{d}\right| \leqslant \ell^{(1-\Omega(1)) d} \leqslant \ell^{d-1-\Omega(1)}
$$

- \Rightarrow Hall's marriage condition
- Rado'49: \exists perfect matching
- Axiom of Choice

Local rules

Local rules

- r-local function of A and B : Boolean combination of A and B, shifted by $\sum_{i=1}^{d} n_{i} \mathbf{x}_{i}$ with $\mathbf{n} \in\{-r, \ldots, r\}^{d}$

Local rules

- r-local function of A and B : Boolean combination of A and B, shifted by $\sum_{i=1}^{d} n_{i} \mathbf{x}_{i}$ with $\mathbf{n} \in\{-r, \ldots, r\}^{d}$
- Venn diagrams for $r=1$ and $r=2$:

Constructing a maximal matching \mathcal{M}

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$
- $B_{1}:=A_{1}+\mathbf{v}_{1}$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$
- $B_{1}:=A_{1}+\mathbf{v}_{1}$
- $A_{2}:=\left(A \backslash A_{1}\right) \cap\left(\left(B \backslash B_{1}\right)-\mathbf{v}_{2}\right)$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$
- $B_{1}:=A_{1}+\mathbf{v}_{1}$
- $A_{2}:=\left(A \backslash A_{1}\right) \cap\left(\left(B \backslash B_{1}\right)-\mathbf{v}_{2}\right)$
- $B_{2}:=A_{2}+\mathbf{v}_{2}$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$
- $B_{1}:=A_{1}+\mathbf{v}_{1}$
- $A_{2}:=\left(A \backslash A_{1}\right) \cap\left(\left(B \backslash B_{1}\right)-\mathbf{v}_{2}\right)$
- $B_{2}:=A_{2}+\mathbf{v}_{2}$
- $A_{3}:=\left(A \backslash\left(A_{1} \cup A_{2}\right)\right) \cap\left(\left(B \backslash\left(B_{1} \cup B_{2}\right)\right)-\mathbf{v}_{3}\right)$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:
- $A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)$
- $B_{1}:=A_{1}+\mathbf{v}_{1}$
- $A_{2}:=\left(A \backslash A_{1}\right) \cap\left(\left(B \backslash B_{1}\right)-\mathbf{v}_{2}\right)$
- $B_{2}:=A_{2}+\mathbf{v}_{2}$
- $A_{3}:=\left(A \backslash\left(A_{1} \cup A_{2}\right)\right) \cap\left(\left(B \backslash\left(B_{1} \cup B_{2}\right)\right)-\mathbf{v}_{3}\right)$

Constructing a maximal matching \mathcal{M}

- Order $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$
- Greedy Algorithm:

```
    - \(A_{1}:=A \cap\left(B-\mathbf{v}_{1}\right)\)
    - \(B_{1}:=A_{1}+\mathbf{v}_{1}\)
    - \(A_{2}:=\left(A \backslash A_{1}\right) \cap\left(\left(B \backslash B_{1}\right)-\mathbf{v}_{2}\right)\)
    - \(B_{2}:=A_{2}+\mathbf{v}_{2}\)
    - \(A_{3}:=\left(A \backslash\left(A_{1} \cup A_{2}\right)\right) \cap\left(\left(B \backslash\left(B_{1} \cup B_{2}\right)\right)-\mathbf{v}_{3}\right)\)
```

- A_{i}, B_{i} are $i M$-local functions of A and B

High level strategy for Jordan pieces

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces
- Initially: $A_{1}^{0}, \ldots, A_{N}^{0}$ empty

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces
- Initially: $A_{1}^{0}, \ldots, A_{N}^{0}$ empty
- For $i=0,1,2, \ldots$:

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces
- Initially: $A_{1}^{0}, \ldots, A_{N}^{0}$ empty
- For $i=0,1,2, \ldots$:
- Construct inside A disjoint $A_{1}^{i+1} \supseteq A_{1}^{i}, \ldots, A_{N}^{i+1} \supseteq A_{N}^{i}$

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces
- Initially: $A_{1}^{0}, \ldots, A_{N}^{0}$ empty
- For $i=0,1,2, \ldots$:
- Construct inside A disjoint $A_{1}^{i+1} \supseteq A_{1}^{i}, \ldots, A_{N}^{i+1} \supseteq A_{N}^{i}$
- Finally: $A_{j}:=\cup_{i=1}^{\infty} A_{i}^{j}$

High level strategy for Jordan pieces

- Recall: $N=|\mathcal{V}|$ is the number of pieces
- Initially: $A_{1}^{0}, \ldots, A_{N}^{0}$ empty
- For $i=0,1,2, \ldots$:
- Construct inside A disjoint $A_{1}^{i+1} \supseteq A_{1}^{i}, \ldots, A_{N}^{i+1} \supseteq A_{N}^{i}$
- Finally: $A_{j}:=\cup_{i=1}^{\infty} A_{i}^{j}$
- Lemma: If $A \in \mathcal{J}$, each $A_{j}^{i} \in \mathcal{J}$ and $\lambda\left(A \backslash \cup_{i=1}^{\infty} A_{i}\right)=0$ then $A_{1}, \ldots, A_{n} \in \mathcal{J}$

High level strategy for small boundary

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$
- Current (partial) pieces $A_{1}^{i} \subseteq A_{1}, \ldots, A_{N}^{i} \subseteq A_{N}$

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$
- Current (partial) pieces $A_{1}^{i} \subseteq A_{1}, \ldots, A_{N}^{i} \subseteq A_{N}$
- Regardless of future, $\forall j$
$N_{\varepsilon}\left(\partial A_{j}\right)$

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$
- Current (partial) pieces $A_{1}^{i} \subseteq A_{1}, \ldots, A_{N}^{i} \subseteq A_{N}$
- Regardless of future, $\forall j$

$$
N_{\varepsilon}\left(\partial A_{j}\right) \leqslant N_{\varepsilon}\left(\partial A_{j}^{i}\right)+\# \varepsilon \text {-cubes in } \mathbb{B}_{\varepsilon}(A) \backslash \cup_{j=1}^{N} A_{j}^{i}
$$

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$
- Current (partial) pieces $A_{1}^{i} \subseteq A_{1}, \ldots, A_{N}^{i} \subseteq A_{N}$
- Regardless of future, $\forall j$
$N_{\varepsilon}\left(\partial A_{j}\right) \leqslant N_{\varepsilon}\left(\partial A_{j}^{i}\right)+\# \varepsilon$-cubes in $\mathbb{B}_{\varepsilon}(A) \backslash \cup_{j=1}^{N} A_{j}^{i}$

$$
\leqslant N_{\varepsilon}\left(\partial A_{j}^{i}\right)+\frac{\lambda\left(\mathbb{B}_{\varepsilon}(A) \backslash \cup_{k=1}^{N} A_{k}^{i}\right)}{\varepsilon^{k}}
$$

High level strategy for small boundary

- Given $\varepsilon>0$ choose $i=i(\varepsilon)$
- Current (partial) pieces $A_{1}^{i} \subseteq A_{1}, \ldots, A_{N}^{i} \subseteq A_{N}$
- Regardless of future, $\forall j$

$$
\begin{aligned}
N_{\varepsilon}\left(\partial A_{j}\right) & \leqslant N_{\varepsilon}\left(\partial A_{j}^{i}\right)+\# \varepsilon \text {-cubes in } \mathbb{B}_{\varepsilon}(A) \backslash \cup_{j=1}^{N} A_{j}^{i} \\
& \leqslant N_{\varepsilon}\left(\partial A_{j}^{i}\right)+\frac{\lambda\left(\mathbb{B}_{\varepsilon}(A) \backslash \cup_{k=1}^{N} A_{k}^{i}\right)}{\varepsilon^{k}}
\end{aligned}
$$

- A_{j}^{i} is an r_{i}-local function of A and $B \Rightarrow$

$$
N_{\varepsilon}\left(\partial A_{j}^{i}\right) \leqslant 2^{d} \cdot\left(2 r_{i}+1\right)^{d} \cdot N_{\varepsilon}(\partial A \cup \partial B)
$$

Equidecompositions via flows

Equidecompositions via flows

- Flow: $f: E(\mathcal{G}) \rightarrow \mathbb{R}$ s.t. $f(x, y)=-f(y, x)$

Equidecompositions via flows

- Flow: $f: E(\mathcal{G}) \rightarrow \mathbb{R}$ s.t. $f(x, y)=-f(y, x)$
- $f^{\text {out }}(x):=\sum_{y} f(x, y)$

Equidecompositions via flows

- Flow: $f: E(\mathcal{G}) \rightarrow \mathbb{R}$ s.t. $f(x, y)=-f(y, x)$
- $f^{\text {out }}(x):=\sum_{y} f(x, y)$
- $A B$-flow: $f^{\text {out }}=-\mathbb{1}_{A}+\mathbb{1}_{B}$

Equidecompositions via flows

- Flow: $f: E(\mathcal{G}) \rightarrow \mathbb{R}$ s.t. $f(x, y)=-f(y, x)$
- $f^{\text {out }}(x):=\sum_{y} f(x, y)$
- $A B$-flow: $f^{\text {out }}=-\mathbb{1}_{A}+\mathbb{1}_{B}$
- Marks-Unger'17: \exists bounded integer-valued Borel $A B$-flow $\Rightarrow A \sim_{\mathcal{B}} B$

Bounded integer-valued $A B$-flow $\Rightarrow A \sim B$

Borel circle squaring (Marks-Unger'17)

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}
- Inductively construct f_{i} :

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G} - Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}
- Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube
- average these over all $2^{i d}$ choices of 2^{i}-grids

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}
- Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube
- average these over all $2^{i d}$ choices of 2^{i}-grids
- $f_{\infty}:=\lim _{i \rightarrow \infty} f_{i}$

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G} - Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube
- average these over all $2^{i d}$ choices of 2^{i}-grids
- $f_{\infty}:=\lim _{i \rightarrow \infty} f_{i}$
- Round f_{∞} to integer-valued Borel flow g

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}
- Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube
- average these over all $2^{i d}$ choices of 2^{i}-grids
- $f_{\infty}:=\lim _{i \rightarrow \infty} f_{i}$
- Round f_{∞} to integer-valued Borel flow g
- Marks-Unger'17: \forall finite connected $S \subseteq \mathcal{G}$ one can make f_{∞} integer on

$$
\partial S:=\left\{(\mathbf{x}, \mathbf{y}) \in E(\mathcal{G}) \cap\left(S \times S^{c}\right)\right\}
$$

changing f_{∞} only near ∂S, by at most 3^{d}

Borel circle squaring (Marks-Unger'17)

- Aim: bounded integer-valued Borel $A B$-flow
- \exists bounded real-valued Borel $A B$-flow f_{∞} in \mathcal{G}
- Inductively construct f_{i} :
- augment f_{i-1} in each 2^{i}-cube
- average these over all $2^{i d}$ choices of 2^{i}-grids
- $f_{\infty}:=\lim _{i \rightarrow \infty} f_{i}$
- Round f_{∞} to integer-valued Borel flow g
- Marks-Unger'17: \forall finite connected $S \subseteq \mathcal{G}$ one can make f_{∞} integer on

$$
\partial S:=\left\{(\mathbf{x}, \mathbf{y}) \in E(\mathcal{G}) \cap\left(S \times S^{c}\right)\right\}
$$

changing f_{∞} only near ∂S, by at most 3^{d}

- Boykin-Jackson'07 \Rightarrow Borel toast

Jordan measurable pieces

Jordan measurable pieces

- Recall high-level strategy:

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
- \Rightarrow final A_{j} is Jordan measurable

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
- \Rightarrow final A_{j} is Jordan measurable
- In terms of flows:

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
- \Rightarrow final A_{j} is Jordan measurable
- In terms of flows:
- Construct partial integer-valued flows $g_{i}, i=0,1, \ldots$

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
- \Rightarrow final A_{j} is Jordan measurable
- In terms of flows:
- Construct partial integer-valued flows $g_{i}, i=0,1, \ldots$
- g_{i} is never overridden later

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
$\Rightarrow \quad \Rightarrow$ final A_{j} is Jordan measurable
- In terms of flows:
- Construct partial integer-valued flows $g_{i}, i=0,1, \ldots$
- g_{i} is never overridden later
- Lemma: when rounding ∂S, it is enough to know only approximation f_{m} instead of $f_{\infty}, m=m(A, B, S)$

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
$\Rightarrow \quad \Rightarrow$ final A_{j} is Jordan measurable
- In terms of flows:
- Construct partial integer-valued flows $g_{i}, i=0,1, \ldots$
- g_{i} is never overridden later
- Lemma: when rounding ∂S, it is enough to know only approximation f_{m} instead of $f_{\infty}, m=m(A, B, S)$
- Run Borel equidecomposition on the unmatched part...

Jordan measurable pieces

- Recall high-level strategy:
- Each locally-defined piece A_{j} grows
- They exhaust A in measure
- \Rightarrow final A_{j} is Jordan measurable
- In terms of flows:
- Construct partial integer-valued flows $g_{i}, i=0,1, \ldots$
- g_{i} is never overridden later
- Lemma: when rounding ∂S, it is enough to know only approximation f_{m} instead of $f_{\infty}, m=m(A, B, S)$
- Run Borel equidecomposition on the unmatched part.

Open Problems

Open Problems

\checkmark Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01 ?$

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ?

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}
- Marks-Unger'17: $\leqslant 10^{200}$

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}
- Marks-Unger'17: $\leqslant 10^{200}$
- Lower bound:

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}
- Marks-Unger'17: $\leqslant 10^{200}$
- Lower bound:
- 3 (if rotations allowed)

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}
- Marks-Unger'17: $\leqslant 10^{200}$
- Lower bound:
- 3 (if rotations allowed)
- 4 (for translations only)

Open Problems

- Circle squaring with $\operatorname{dim}_{\square} A_{i}<1.01$? Exactly 1 ?
- Circle squaring with F_{σ}-sets ? \boldsymbol{B} (open sets) ?
- Minimum number of pieces for circle squaring ?
- Laczkovich'92: "a rough estimate" is 10^{40}
- Marks-Unger'17: $\leqslant 10^{200}$
- Lower bound:
- 3 (if rotations allowed)
- 4 (for translations only)
- Analogous Borel results for e.g. $S O(3) \curvearrowright \mathbb{S}^{2}$?

Discrete circle squaring (by András Máthé)

580×580 torus, 5 pieces, working modulo 1

Thank you!

