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Baire equidecompositions

» 7 := {Baire measurable sets}

» Dougherty-Foreman'92: k > 3, A, B € T(R¥),
bounded, non-empty interior = A~+ B

» = Every finitely-additive isometry-invariant mean
on {X € T(RX) : bounded}, k > 3, is zero

» Resolved Marczewski Problem’30

» Marks-Unger’16: simpler proof
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» L := {Lebesgue measurable sets}
» Necessary conditions for A ~, [0, 1]%:
> Ac L
> A\(A) =1 () :=the Lebesgue measure)
> finitely many copies of A cover [0, 1]
» Ais bounded
» Grabowski-Mathé-P’22: sufficient for kK > 3
» = Margulis’82 (Banach-Ruziewicz Problem):
v isometry-invariant finitely-additive mean on
L N {bounded} is Constant - A
» Grabowski-Mathé-P’22: V isometry-invariant
fin-additive mean on £N 7 N {bounded} is Constant - A

» Open: Analogous results for the Borel o-algebra 3
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RX with k < 2

» Banach’23: A~ B, A,/ Be L = \NA)=\B)
> Impossible to double a disk

» Tarski’s Circle Squaring Problem’25: |Is disk

equidecomposable to a square ?

» von Neumann’29: Yes, with affine transformations
» Dubins-Hirsh-Karush’63: No, with scissor congruence
» Gardner'85: No, with a discrete subgroup of Iso(R?)
» Laczkovich’90: YES, using translations only



Upper Minkowski (box) dimension in R¥



Upper Minkowski (box) dimension in R¥

> N.(X) :=# of e-grid cubes intersecting X



Upper Minkowski (box) dimension in R¥

» N.(X) :=# of e-grid cubes intersecting X

L 1 < L ——
/I AN i i
4 \ i i
) F
\ / i |
N\ / . .
N P 1
~—— Su——




Upper Minkowski (box) dimension in R¥

> N.(X) :=# of e-grid cubes intersecting X
// = \\ T Sl A s
4 \ - :
[ \ 7 . %— —§
{ ] ! ;
\ ] | |
\\\ /// — : - B
- dime X i i, )



Upper Minkowski (box) dimension in R¥

> N.(X) :=# of e-grid cubes intersecting X
// = \\ T Sl A s
4 \ - :
[ \ 7 . %— —§
{ ] ! ;
\ ] | |
\\\ /// — : - B
- dime X i i, )

» Minimum d s.t. No(X) < (1/e)9T°( ase — 0



Upper Minkowski (box) dimension in R¥

» N.(X) :=# of e-grid cubes intersecting X

i \ i - g
| | % e
\ / : | | ||
N / . .
: : log(N= (X
» dimy X := limsup__, Oli(g(156)))

» Minimum d s.t. No(X) < (1/e)9T°( ase — 0
> E.g. dimg 0B =1



Upper Minkowski (box) dimension in R¥

» N.(X) :=# of e-grid cubes intersecting X

i \ i - g
| | % e
\ / : | | ||
N / . .
: : log(N= (X
» dimy X := limsup__, Oli(g(156)))

» Minimum d s.t. No(X) < (1/e)9T°( ase — 0
> E.g. dimg 0B =1
» Box: [a1,bq) X ... X [ak, bk)



Upper Minkowski (box) dimension in R¥

» N.(X) :=# of e-grid cubes intersecting X

// T \\ + o] L+

4 \ i i

i Y - g

| ] : : % %
\ / : | | ||

N / . .

: : log(N= (X
» dimy X := limsup__, Oli(g(1§s)))

» Minimum d s.t. No(X) < (1/e)9T°( ase — 0
» E.g. dimyOB2 =1
» Box: [a1,bq) X ... X [ak, bk)
» dimg 0X < k— ¢ = well approximated by boxes



Upper Minkowski (box) dimension in R¥

» N.(X) :=# of e-grid cubes intersecting X

// T \\ + o] L+
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: : log(N= (X
» dimy X := limsup__, "Ii(g(158)))

» Minimum d s.t. No(X) < (1/e)9T°( ase — 0
» E.g. dimyOB2 =1
» Box: [a1,bq) X ... X [ak, bk)
» dimg 0X < k— ¢ = well approximated by boxes
> 3K C X C Uwith \(U\ K) < ¢, using O(c°¥) boxes
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>
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Same assumptions: bounded A, B C R, k > 1,
dimg 0A,dimg 0B < k, A(A) = A(B) >0
Grabowski-Mathé-P17: A~,~+ B
Marks-Unger'17: ABeB = A~z B
Ciesla-Sabok’21, Bernshteyn-Tserunyan-Unger’ >23,
Bowen-Kun-Sabok’ >23: new proofs / generalisations
Mathé-Noel-P. >23: A ~ B with
» dimg 0A; < k
» A; € B(X(B(boxes & translates of A and B)))
> 3I: countable unions
» B: Boolean combinations
= Circle squaring with dimg 0A; < 1.987 and
A; € B(F,-sets)
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> X C[0,1)

» dimg 90X < k = X is Jordan measurable

» X is Jordan measurable: 1y is Riemann integrable
> < X cuts o(n¥) cubes of the 1-grid on [0, 1)k

» dimy0X < k—c = cuts < nf—°to() cubes

» Algebras but not o-algebras
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» |sometries 4, ..., n
» Bipartite graph #:
» V.=AUB
> E:={xycAxB:3i~(x)=y}

\

e
e
o

» Matching M C E < disjoint Ay, ..., A, C As.t.
Y1(A1), ..., 7n(An) C B are disjoint

» o perfect matching = A~ B
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Work on the torus T := R¥/Z (i.e. modulo 1)

Fix (large) integer d = d(A, B)

Random X, ..., Xq € TX

Large M = M(A, B, X1, ..., Xq)

G = (T* {{u,u+mx;+... +ngxs} : n € {—1,0,1}9})
» Schreier graph of Z9 ~ T* wrt {—1,0,1}¢
» Components of G: (39 — 1)-regular copies of Z¢

» Aim: Bijection ¢ : A — B with distg(u, ¢(u)) < M

> Vi={mXy+ .. +ngXg:ne{-M ... M}

» Number of parts N := [V| = (2M + 1)4

vvyyVvyvyy
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» Xisabox = a.e.x 3dC Vdiscrete /-cube Qin G
11X N Q| —AX)t?| < Cloghtot! ¢
» dimy A < k = a.e. x Vdiscrete /-cube Qin g

||AﬂQ|— gd‘<€(1 Q(1))d €d1Q()

» = Hall's marriage condition
» Rado’49: 3 perfect matching
» Axiom of Choice
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» r-local function of A and B: Boolean combination of A
and B, shifted by >, nix; with n e {—r, ..., r}¢
» Venn diagrams for r =1 and r = 2:
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Constructing a maximal matching M

» Order V = {Vq,Va, ..., Vn}
» Greedy Algorithm:
> Ay Z:Aﬂ(B—V1)

» B;:= A +Vq

> Ax:=(A\A)N((B\By)—Vv2)

» By :=A>+ Vo

> Az = (A\ (A1 UA2))N((B\ (B UBz)) —v3)
>

> A,, B; are iM-local functions of A and B
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High level strategy for Jordan pieces

» Recall: N = |V| is the number of pieces
> Initially: A9, ..., A%, empty
» Fori=0,1,2,...:
> Construct inside A disjoint A{™ D A}, ..., AN D A),
> Finally: A := U2, A
> Lemma: If Ac 7, each Al € J and A(A\ U, A) =0
then A, ..., A, € J
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High level strategy for small boundary

» Given e > 0 choose i = i(e)
» Current (partial) pieces A} C Ay, ... , Ay, C Ay
» Regardless of future, Vj

N.(0A) < N.(OA)+ # e-cubes in B.(A) \ UYL, Al

A(B-(A) \ U1 AL)

< N(0A) +

> A}i is an ri-local functionof Aand B =

N.(0A) < 29 (2r;+1)7 - N.(OAU OB)
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Borel circle squaring (Marks-Unger’'17)

» Aim: bounded integer-valued Borel AB-flow

» - bounded real-valued Borel AB-flow 7, in G
» Inductively construct f:
> augment f_4 in each 2/-cube
> average these over all 2 choices of 2/-grids

> fo = limjo fi
» Round £, to integer-valued Borel flow g

» Marks-Unger’17: V finite connected S C G one can
make f,, integer on

0S = {(x,y) € E(G)N (S x 8°)}

changing £, only near S, by at most 3¢
» Boykin-Jackson’'07 = Borel toast
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» Recall high-level strategy:
> Each locally-defined piece A; grows
» They exhaust A in measure
» = final A; is Jordan measurable
» In terms of flows:
» Construct partial integer-valued flows g;, i = 0,1, ...
> g, is never overridden later
» Lemma: when rounding 08, it is enough to know only
approximation f, instead of f,,, m= m(A, B, S)
» Run Borel equidecomposition on the unmatched
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Open Problems

» Circle squaring with dimg A; < 1.01 ? Exactly 1 ?
» Circle squaring with F,-sets ? B(open sets) ?
» Minimum number of pieces for circle squaring ?

» Laczkovich’92: “a rough estimate” is 1040
» Marks-Unger'17: < 10290
» Lower bound:

> 3 (if rotations allowed)
> 4 (for translations only)

» Analogous Borel results for e.g. SO(3) ~ S? ?



Discrete circle squaring (by Andras Mathé)

580 x 580 torus, 5 pieces, working modulo 1



Thank you!



