Circle Squaring with Pieces of Small Boundary and Low Borel Complexity

Joint work with András Máthé and Jonathan A. Noel

Introducion

Introducion

► Gábor's talk from yesterday

Introducion

- Gábor's talk from yesterday
- ► Proof:

▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B)$:

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B)$:
 - $ightharpoonup \exists A = A_1 \sqcup ... \sqcup A_n$

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B)$:
 - $ightharpoonup \exists A = A_1 \sqcup ... \sqcup A_n$
 - $\blacksquare \exists B = B_1 \sqcup ... \sqcup B_n$

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B)$:
 - $ightharpoonup \exists A = A_1 \sqcup ... \sqcup A_n$
 - $ightharpoonup \exists B = B_1 \sqcup ... \sqcup B_n$

st $\forall i \exists \text{ isometry } \gamma_i \text{ with } B_i = \gamma_i(A_i)$

Banach-Tarski'24: $k \ge 3$, $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$

- ▶ Banach-Tarski'24: $k \ge 3$, $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on all bounded subsets of \mathbb{R}^k , $k \ge 3$, is zero

- ▶ Banach-Tarski'24: $k \ge 3$, $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on all bounded subsets of \mathbb{R}^k , $k \ge 3$, is zero
- ► Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1} , $k \ge 3$

- ▶ Banach-Tarski'24: $k \ge 3$, $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on all bounded subsets of \mathbb{R}^k , $k \ge 3$, is zero
- ► Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1} , $k \ge 3$
- Axiom of Choice

- ▶ Banach-Tarski'24: $k \ge 3$, $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on all bounded subsets of \mathbb{R}^k , $k \ge 3$, is zero
- ► Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1} , $k \ge 3$
- Axiom of Choice
- "Constructive" equidecompositions?

▶ T := {Baire measurable sets}

- ▶ T := {Baire measurable sets}
- ▶ Dougherty-Foreman'92: $k \geqslant 3$, $A, B \in \mathcal{T}(\mathbb{R}^k)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$

- ► *T* := {Baire measurable sets}
- ▶ Dougherty-Foreman'92: $k \ge 3$, $A, B \in \mathcal{T}(\mathbb{R}^k)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on $\{X \in \mathcal{T}(\mathbb{R}^k) : \text{bounded}\}, k \ge 3, \text{ is zero}$

- ▶ T := {Baire measurable sets}
- ▶ Dougherty-Foreman'92: $k \ge 3$, $A, B \in \mathcal{T}(\mathbb{R}^k)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on $\{X \in \mathcal{T}(\mathbb{R}^k) : \text{bounded}\}, k \ge 3, \text{ is zero}$
- Resolved Marczewski Problem'30

- ▶ T := {Baire measurable sets}
- ▶ Dougherty-Foreman'92: $k \ge 3$, $A, B \in \mathcal{T}(\mathbb{R}^k)$, bounded, non-empty interior $\Rightarrow A \sim_{\mathcal{T}} B$
- ▶ ⇒ Every finitely-additive isometry-invariant mean on $\{X \in \mathcal{T}(\mathbb{R}^k) : \text{bounded}\}, k \ge 3, \text{ is zero}$
- Resolved Marczewski Problem'30
- Marks-Unger'16: simpler proof

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

Lebesgue measurable pieces in \mathbb{R}^k , $k \ge 3$

► L := {Lebesgue measurable sets}

Lebesgue measurable pieces in \mathbb{R}^k , $k \ge 3$

- \(\mathcal{L}\) := \{\text{Lebesgue measurable sets}\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

- \(\mathcal{L}\) := \{Lebesgue measurable sets\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

- \(\mathcal{L}\) := \{\text{Lebesgue measurable sets}\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1 \ (\lambda := \text{the Lebesgue measure})$

Lebesgue measurable pieces in \mathbb{R}^k , $k \ge 3$

- \(\mathcal{L}\) := \{\text{Lebesgue measurable sets}\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1 \ (\lambda := \text{the Lebesgue measure})$
 - finitely many copies of A cover $[0,1]^k$

Lebesgue measurable pieces in \mathbb{R}^k , $k \ge 3$

- \(\mathcal{L}\) := \{\text{Lebesgue measurable sets}\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1$ ($\lambda :=$ the Lebesgue measure)
 - finitely many copies of A cover $[0,1]^k$
 - A is bounded

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

- \(\mathcal{L}\) := \{\text{Lebesgue measurable sets}\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1$ ($\lambda :=$ the Lebesgue measure)
 - finitely many copies of A cover $[0,1]^k$
 - A is bounded
- ► Grabowski-Máthé-P.'22: sufficient for $k \ge 3$

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

- \(\mathcal{L}\) := \{Lebesgue measurable sets\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1$ ($\lambda := \text{the Lebesgue measure}$)
 - ▶ finitely many copies of A cover [0, 1]^k
 - A is bounded
- ► Grabowski-Máthé-P.'22: sufficient for $k \ge 3$
 - ⇒ Margulis'82 (Banach-Ruziewicz Problem): \forall isometry-invariant finitely-additive mean on $\mathcal{L} \cap \{\text{bounded}\}\$ is Constant $\cdot \lambda$

Lebesgue measurable pieces in \mathbb{R}^k , $k \ge 3$

- \(\mathcal{L}\) := \{Lebesgue measurable sets\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1$ ($\lambda := \text{the Lebesgue measure}$)
 - finitely many copies of A cover $[0,1]^k$
 - A is bounded
- ► Grabowski-Máthé-P.'22: sufficient for $k \ge 3$
 - ▶ ⇒ Margulis'82 (Banach-Ruziewicz Problem): \forall isometry-invariant finitely-additive mean on $\mathcal{L} \cap \{\text{bounded}\}\$ is Constant $\cdot \lambda$
- ► Grabowski-Máthé-P.'22: \forall isometry-invariant fin-additive mean on $\mathcal{L} \cap \mathcal{T} \cap \{\text{bounded}\}$ is Constant $\cdot \lambda$

Lebesgue measurable pieces in \mathbb{R}^k , $k \geqslant 3$

- \(\mathcal{L}\) := \{Lebesgue measurable sets\}
- ▶ Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - $ightharpoonup A \in \mathcal{L}$
 - $\lambda(A) = 1$ ($\lambda :=$ the Lebesgue measure)
 - finitely many copies of A cover $[0,1]^k$
 - A is bounded
- ► Grabowski-Máthé-P.'22: sufficient for $k \ge 3$
 - ▶ ⇒ Margulis'82 (Banach-Ruziewicz Problem): \forall isometry-invariant finitely-additive mean on $\mathcal{L} \cap \{\text{bounded}\}\$ is Constant $\cdot \lambda$
- ► Grabowski-Máthé-P.'22: \forall isometry-invariant fin-additive mean on $\mathcal{L} \cap \mathcal{T} \cap \{\text{bounded}\}$ is Constant $\cdot \lambda$
- **Open:** Analogous results for the Borel σ -algebra \mathcal{B}

 \mathbb{R}^k with $k \leqslant 2$

$$\mathbb{R}^k$$
 with $k \leq 2$

▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$

 \mathbb{R}^k with $k \leq 2$

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk

\mathbb{R}^k with $k \leq 2$

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- ► Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- ► Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- ► Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations
 - Dubins-Hirsh-Karush'63: No, with scissor congruence

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- ► Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations
 - ▶ Dubins-Hirsh-Karush'63: No, with scissor congruence
 - ► Gardner'85: No, with a discrete subgroup of $Iso(\mathbb{R}^2)$

- ▶ Banach'23: $A \sim B$, $A, B \in \mathcal{L} \Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- ► Tarski's Circle Squaring Problem'25: Is disk equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations
 - ▶ Dubins-Hirsh-Karush'63: No, with scissor congruence
 - ▶ Gardner'85: No, with a discrete subgroup of $Iso(\mathbb{R}^2)$
 - Laczkovich'90: YES, using translations only

 $ightharpoonup N_{\varepsilon}(X) := \# \text{ of } \varepsilon\text{-grid cubes intersecting } X$

▶ $N_{\varepsilon}(X)$:= # of ε -grid cubes intersecting X

 $ightharpoonup \dim_{\square} X := \limsup_{\varepsilon o 0} rac{\log(N_{\varepsilon}(X))}{\log(1/\varepsilon)}$

- $ightharpoonup \dim_{\square} X := \limsup_{\varepsilon o 0} rac{\log(N_{\varepsilon}(X))}{\log(1/\varepsilon)}$
 - ▶ Minimum d s.t. $N_{\varepsilon}(X) \leq (1/\varepsilon)^{d+o(1)}$ as $\varepsilon \to 0$

- - ▶ Minimum d s.t. $N_{\varepsilon}(X) \leqslant (1/\varepsilon)^{d+o(1)}$ as $\varepsilon \to 0$
- ► E.g. $\dim_{\square} \partial \mathbb{B}^2 = 1$

- $ightharpoonup \dim_{\square} X := \limsup_{\varepsilon o 0} rac{\log(N_{\varepsilon}(X))}{\log(1/\varepsilon)}$
 - ▶ Minimum d s.t. $N_{\varepsilon}(X) \leqslant (1/\varepsilon)^{d+o(1)}$ as $\varepsilon \to 0$
- ► E.g. dim_□ $\partial \mathbb{B}^2 = 1$
- $\blacktriangleright \quad \mathsf{Box:} \ [a_1,b_1) \times \ldots \times [a_k,b_k)$

- $ightharpoonup \dim_{\square} X := \limsup_{\varepsilon o 0} rac{\log(N_{\varepsilon}(X))}{\log(1/\varepsilon)}$
 - ▶ Minimum d s.t. $N_{\varepsilon}(X) \leqslant (1/\varepsilon)^{d+o(1)}$ as $\varepsilon \to 0$
- ► E.g. dim_□ $\partial \mathbb{B}^2 = 1$
- $\blacktriangleright \quad \mathsf{Box:} \ [a_1,b_1) \times \ldots \times [a_k,b_k)$
- ▶ $\dim_{\square} \partial X < k c$ ⇒ well approximated by boxes

- $ightharpoonup \dim_{\square} X := \limsup_{\varepsilon o 0} rac{\log(N_{\varepsilon}(X))}{\log(1/\varepsilon)}$
 - ▶ Minimum d s.t. $N_{\varepsilon}(X) \leqslant (1/\varepsilon)^{d+o(1)}$ as $\varepsilon \to 0$
- ► E.g. dim_□ $\partial \mathbb{B}^2 = 1$
- $\blacktriangleright \quad \mathsf{Box:} \ [a_1,b_1) \times \ldots \times [a_k,b_k)$
- ▶ $\dim_{\square} \partial X < k c$ ⇒ well approximated by boxes
 - ▶ $\exists K \subseteq X \subseteq U$ with $\lambda(U \setminus K) < \varepsilon$, using $O(\varepsilon^{c-k})$ boxes

▶ Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$

- ► Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$
 - $ightharpoonup dim_{\square} \partial A, \dim_{\square} \partial B < k$

- ► Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$
 - ▶ $\dim_{\square} \partial A$, $\dim_{\square} \partial B < k$
 - $\lambda(A) = \lambda(B) > 0$

- ▶ Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$
 - $ightharpoonup dim_{\square} \partial A$, $\dim_{\square} \partial B < k$
 - $\lambda(A) = \lambda(B) > 0$
 - \Rightarrow $A \sim B$, using translations only

- ▶ Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$
 - ▶ $\dim_{\square} \partial A$, $\dim_{\square} \partial B < k$
 - $\lambda(A) = \lambda(B) > 0$
 - \Rightarrow $A \sim B$, using translations only
- Axiom of Choice

- ▶ Laczkovich'92: Bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$
 - ▶ $\dim_{\square} \partial A$, $\dim_{\square} \partial B < k$
 - $\lambda(A) = \lambda(B) > 0$
 - \Rightarrow $A \sim B$, using translations only
- Axiom of Choice
- "Constructive" equidecomposition ?

► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k, \lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k, \lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k, \lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations

- ► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with

- ► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with
 - ▶ dim_□ $\partial A_i < k$

- ► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with
 - ightharpoonup dim $_{\square} \partial A_i < k$
 - ▶ $A_i \in B(\Sigma(B(boxes \& translates of A and B)))$

- Same assumptions: bounded $A, B \subseteq \mathbb{R}^k, k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k, \lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with
 - ▶ $\dim_{\square} \partial A_i < k$
 - ▶ $A_i \in B(\Sigma(B(boxes \& translates of A and B)))$
 - ▶ ∑: countable unions

- ► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with
 - ▶ $\dim_{\square} \partial A_i < k$
 - ▶ $A_i \in B(\Sigma(B(boxes \& translates of A and B)))$
 - Σ: countable unions
 - B: Boolean combinations

- ► Same assumptions: bounded $A, B \subseteq \mathbb{R}^k$, $k \geqslant 1$, $\dim_{\square} \partial A, \dim_{\square} \partial B < k$, $\lambda(A) = \lambda(B) > 0$
- ► Grabowski-Máthé-P.'17: $A \sim_{\mathcal{L} \cap \mathcal{T}} B$
- ► Marks-Unger'17: $A, B \in \mathcal{B} \Rightarrow A \sim_{\mathcal{B}} B$
- Cieśla-Sabok'21, Bernshteyn-Tserunyan-Unger' ≥23, Bowen-Kun-Sabok' ≥23: new proofs / generalisations
- Máthé-Noel-P. ≥23: A ~ B with
 - ▶ $\dim_{\square} \partial A_i < k$
 - ▶ $A_i \in B(\Sigma(B(boxes \& translates of A and B)))$
 - Σ: countable unions
 - **B**: Boolean combinations
- ▶ ⇒ Circle squaring with $\dim_{\square} \partial A_i < 1.987$ and $A_i \in \mathbf{B}(F_{\sigma}\text{-sets})$

 $X \subseteq [0,1)^k$

- $X \subseteq [0,1)^k$
- ▶ $\dim_{\square} \partial X < k \Rightarrow X$ is Jordan measurable

- \triangleright $X \subset [0,1)^k$
- ▶ $\dim_{\square} \partial X < k \Rightarrow X$ is Jordan measurable
- \triangleright X is Jordan measurable: $\mathbb{1}_X$ is Riemann integrable

- \triangleright $X \subset [0,1)^k$
- ▶ $\dim_{\square} \partial X < k \Rightarrow X$ is Jordan measurable
- ightharpoonup X is Jordan measurable: $\mathbb{1}_X$ is Riemann integrable
 - \rightarrow \Leftrightarrow X cuts $o(n^k)$ cubes of the $\frac{1}{n}$ -grid on $[0,1)^k$

Sets with small boundary

- $\rightarrow X \subset [0,1)^k$
- ▶ $\dim_{\square} \partial X < k \Rightarrow X$ is Jordan measurable
- ightharpoonup X is Jordan measurable: $\mathbb{1}_X$ is Riemann integrable
 - $ightharpoonup \Leftrightarrow X \text{ cuts } o(n^k) \text{ cubes of the } \frac{1}{n} \text{-grid on } [0,1)^k$
- ▶ $\dim_{\square} \partial X \leq k c$ ⇒ $\text{cuts} \leq n^{k-c+o(1)}$ cubes

Sets with small boundary

- \triangleright $X \subset [0,1)^k$
- ▶ $\dim_{\square} \partial X < k \Rightarrow X$ is Jordan measurable
- ightharpoonup X is Jordan measurable: $\mathbb{1}_X$ is Riemann integrable
 - \rightarrow \Leftrightarrow X cuts $o(n^k)$ cubes of the $\frac{1}{n}$ -grid on $[0,1)^k$
- ▶ $\dim_{\square} \partial X \leq k c$ ⇒ $\text{cuts} \leq n^{k-c+o(1)}$ cubes
- ▶ Algebras but not σ -algebras

► Isometries $\gamma_1, \dots, \gamma_n$

- ▶ Isometries $\gamma_1, \dots, \gamma_n$
- ▶ Bipartite graph \mathcal{H} :

- ▶ Isometries $\gamma_1, \dots, \gamma_n$
- ▶ Bipartite graph *H*:
 - \lor \lor := $A \sqcup B$

- ► Isometries $\gamma_1, \dots, \gamma_n$
- Bipartite graph \mathcal{H} :
 - \lor $V := A \sqcup B$

- ► Isometries $\gamma_1, \dots, \gamma_n$
- ▶ Bipartite graph H:
 - \lor $V := A \sqcup B$
 - $\triangleright \quad \mathbf{E} := \{ xy \in \mathbf{A} \times \mathbf{B} : \exists i \ \gamma_i(x) = y \}$

- ► Isometries $\gamma_1, \dots, \gamma_n$
- ▶ Bipartite graph \mathcal{H} :
 - \triangleright $V := A \sqcup B$

▶ Matching $\mathcal{M} \subseteq E \iff$ disjoint $A_1, ..., A_n \subseteq A$ s.t. $\gamma_1(A_1), ..., \gamma_n(A_n) \subseteq B$ are disjoint

- ► Isometries $\gamma_1, \dots, \gamma_n$
- ▶ Bipartite graph \mathcal{H} :
 - \triangleright $V := A \sqcup B$

- ▶ Matching $\mathcal{M} \subseteq E \iff$ disjoint $A_1, ..., A_n \subseteq A$ s.t. $\gamma_1(A_1), ..., \gamma_n(A_n) \subseteq B$ are disjoint
- → ∃ perfect matching ⇒ A ~ B

▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k/\mathbb{Z}^k$ (i.e. modulo 1)

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k/\mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$
- $ightharpoonup G := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$
- ▶ $\mathcal{G} := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$
 - ▶ Schreier graph of $\mathbb{Z}^d \curvearrowright \mathbb{T}^k$ wrt $\{-1,0,1\}^d$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$
- $ightharpoonup G := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$
 - ▶ Schreier graph of $\mathbb{Z}^d \curvearrowright \mathbb{T}^k$ wrt $\{-1,0,1\}^d$
 - ▶ Components of \mathcal{G} : $(3^d 1)$ -regular copies of \mathbb{Z}^d

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ightharpoonup Random $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$
- ▶ $\mathcal{G} := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$
 - ▶ Schreier graph of $\mathbb{Z}^d \curvearrowright \mathbb{T}^k$ wrt $\{-1,0,1\}^d$
 - ▶ Components of \mathcal{G} : $(3^d 1)$ -regular copies of \mathbb{Z}^d
- ▶ Aim: Bijection $\phi : A \to B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leqslant M$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- ► Large $M = M(A, B, \mathbf{x}_1, ..., \mathbf{x}_d)$
- ▶ $\mathcal{G} := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$
 - ▶ Schreier graph of $\mathbb{Z}^d \curvearrowright \mathbb{T}^k$ wrt $\{-1, 0, 1\}^d$
 - ▶ Components of \mathcal{G} : $(3^d 1)$ -regular copies of \mathbb{Z}^d
- ▶ Aim: Bijection $\phi : A \to B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leqslant M$
 - $\mathbf{V} := \{ n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d : \mathbf{n} \in \{-M, ..., M\}^d \}$

- ▶ Work on the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- Fix (large) integer d = d(A, B)
- ▶ Random $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{T}^k$
- $\blacktriangleright \text{ Large } \mathbf{M} = \mathbf{M}(\mathbf{A}, \mathbf{B}, \mathbf{x}_1, \dots, \mathbf{x}_d)$
- $ightharpoonup G := (\mathbb{T}^k, \{ \{\mathbf{u}, \mathbf{u} + n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d \} : \mathbf{n} \in \{-1, 0, 1\}^d \})$
 - ▶ Schreier graph of $\mathbb{Z}^d \curvearrowright \mathbb{T}^k$ wrt $\{-1, 0, 1\}^d$
 - ▶ Components of \mathcal{G} : $(3^d 1)$ -regular copies of \mathbb{Z}^d
- ▶ Aim: Bijection $\phi : A \to B$ with $\operatorname{dist}_{\mathcal{G}}(\mathbf{u}, \phi(\mathbf{u})) \leq M$
 - $V := \{n_1 \mathbf{x}_1 + ... + n_d \mathbf{x}_d : \mathbf{n} \in \{-M, ..., M\}^d\}$
 - Number of parts $N := |\mathcal{V}| = (2M + 1)^d$

Local picture for d = 2 and M = 2

Local picture for d = 2 and M = 2

▶ X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ -cube Q in \mathcal{G}

$$||X \cap Q| - \lambda(X)\ell^d| \leqslant C \log^{k+d+1} \ell$$

► X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ -cube Q in \mathcal{G}

$$||X \cap Q| - \lambda(X)\ell^d| \leqslant C \log^{k+d+1} \ell$$

▶ $\dim_{\square} A < k \Rightarrow \text{ a.e. } \mathbf{x} \ \forall \text{ discrete } \ell\text{-cube } Q \text{ in } \mathcal{G}$

$$|A \cap Q| - \lambda(A)\ell^d| \leqslant \ell^{(1-\Omega(1))d} \leqslant \ell^{d-1-\Omega(1)}$$

▶ X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ -cube Q in \mathcal{G}

$$||X \cap Q| - \lambda(X)\ell^d| \leqslant C \log^{k+d+1} \ell$$

▶ dim_□ $A < k \Rightarrow \text{ a.e. } \mathbf{x} \ \forall \text{ discrete } \ell\text{-cube } Q \text{ in } \mathcal{G}$

$$|A \cap Q| - \lambda(A)\ell^d| \leqslant \ell^{(1-\Omega(1))d} \leqslant \ell^{d-1-\Omega(1)}$$

▶ ⇒ Hall's marriage condition

▶ X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ -cube Q in \mathcal{G}

$$||X \cap Q| - \lambda(X)\ell^d| \leqslant C \log^{k+d+1} \ell$$

▶ $\dim_{\square} A < k \Rightarrow \text{ a.e. } \mathbf{x} \ \forall \text{ discrete } \ell\text{-cube } Q \text{ in } \mathcal{G}$

$$|A \cap Q| - \lambda(A)\ell^d| \leqslant \ell^{(1-\Omega(1))d} \leqslant \ell^{d-1-\Omega(1)}$$

- ► ⇒ Hall's marriage condition
- ► Rado'49: ∃ perfect matching

▶ X is a box \Rightarrow a.e. $\mathbf{x} \exists C \forall$ discrete ℓ -cube Q in \mathcal{G}

$$||X \cap Q| - \lambda(X)\ell^d| \leqslant C \log^{k+d+1} \ell$$

▶ dim_□ $A < k \Rightarrow$ a.e. **x** \forall discrete ℓ -cube Q in \mathcal{G}

$$|A \cap Q| - \lambda(A)\ell^d| \leqslant \ell^{(1-\Omega(1))d} \leqslant \ell^{d-1-\Omega(1)}$$

- Hall's marriage condition
- ► Rado'49: ∃ perfect matching
 - Axiom of Choice

Local rules

Local rules

▶ r-local function of A and B: Boolean combination of A and B, shifted by $\sum_{i=1}^{d} n_i \mathbf{x}_i$ with $\mathbf{n} \in \{-r, ..., r\}^d$

Local rules

- ▶ r-local function of A and B: Boolean combination of A and B, shifted by $\sum_{i=1}^{d} n_i \mathbf{x}_i$ with $\mathbf{n} \in \{-r, ..., r\}^d$
- ▶ Venn diagrams for r = 1 and r = 2:

Constructing a maximal matching $\mathcal M$

Constructing a maximal matching \mathcal{M}

 $\qquad \qquad \textbf{Order} \,\, \mathcal{V} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_N \}$

Constructing a maximal matching ${\cal M}$

- Greedy Algorithm:

Constructing a maximal matching \mathcal{M}

- ► Greedy Algorithm:
 - ► $A_1 := A \cap (B \mathbf{v}_1)$

- Greedy Algorithm:
 - ► $A_1 := A \cap (B \mathbf{v}_1)$
 - $ightharpoonup B_1 := A_1 + \mathbf{v}_1$

- Greedy Algorithm:
 - $ightharpoonup A_1 := A \cap (B \mathbf{v}_1)$
 - $ightharpoonup B_1 := A_1 + \mathbf{v}_1$
 - $\blacktriangleright A_2 := (A \setminus A_1) \cap ((B \setminus B_1) \mathbf{v}_2)$

- Greedy Algorithm:
 - $ightharpoonup A_1 := A \cap (B \mathbf{v}_1)$
 - $\triangleright B_1 := A_1 + \mathbf{v}_1$
 - $A_2 := (A \setminus A_1) \cap ((B \setminus B_1) \mathbf{v}_2)$
 - ho $B_2 := A_2 + \mathbf{v}_2$

- Greedy Algorithm:
 - $ightharpoonup A_1 := A \cap (B \mathbf{v}_1)$
 - $\triangleright B_1 := A_1 + \mathbf{v}_1$
 - $ightharpoonup A_2 := (A \setminus A_1) \cap ((B \setminus B_1) \mathbf{v}_2)$
 - $\triangleright B_2 := A_2 + \mathbf{v}_2$
 - $A_3 := (A \setminus (A_1 \cup A_2)) \cap ((B \setminus (B_1 \cup B_2)) \mathbf{v}_3)$

- Greedy Algorithm:
 - $A_1 := A \cap (B \mathbf{v}_1)$
 - $\triangleright B_1 := A_1 + \mathbf{v}_1$
 - $ightharpoonup A_2 := (A \setminus A_1) \cap ((B \setminus B_1) \mathbf{v}_2)$
 - $\triangleright B_2 := A_2 + \mathbf{v}_2$
 - $A_3 := (A \setminus (A_1 \cup A_2)) \cap ((B \setminus (B_1 \cup B_2)) \mathbf{v}_3)$
 - **.**..

- ► Greedy Algorithm:
 - $A_1 := A \cap (B \mathbf{v}_1)$
 - $\triangleright B_1 := A_1 + \mathbf{v}_1$
 - $ightharpoonup A_2 := (A \setminus A_1) \cap ((B \setminus B_1) \mathbf{v}_2)$
 - $B_2 := A_2 + \mathbf{v}_2$
 - ► $A_3 := (A \setminus (A_1 \cup A_2)) \cap ((B \setminus (B_1 \cup B_2)) \mathbf{v}_3)$
- $ightharpoonup A_i$, B_i are iM-local functions of A and B

▶ Recall: $N = |\mathcal{V}|$ is the number of pieces

- ▶ Recall: N = |V| is the number of pieces
- ► Initially: $A_1^0, ..., A_N^0$ empty

- ▶ Recall: $N = |\mathcal{V}|$ is the number of pieces
- ► Initially: $A_1^0, ..., A_N^0$ empty
- For i = 0, 1, 2, ...:

- ▶ Recall: $N = |\mathcal{V}|$ is the number of pieces
- ► Initially: $A_1^0, ..., A_N^0$ empty
- ► For i = 0, 1, 2, ...:
 - ► Construct inside *A* disjoint $A_1^{i+1} \supseteq A_1^i$, ..., $A_N^{i+1} \supseteq A_N^i$

- ▶ Recall: $N = |\mathcal{V}|$ is the number of pieces
- ► Initially: $A_1^0, ..., A_N^0$ empty
- For i = 0, 1, 2, ...:
 - ► Construct inside *A* disjoint $A_1^{i+1} \supseteq A_1^i$, ..., $A_N^{i+1} \supseteq A_N^i$
- ightharpoonup Finally: $A_j := \bigcup_{i=1}^{\infty} A_i^j$

- ▶ Recall: $N = |\mathcal{V}|$ is the number of pieces
- ► Initially: $A_1^0, ..., A_N^0$ empty
- For i = 0, 1, 2, ...:
 - ► Construct inside *A* disjoint $A_1^{i+1} \supseteq A_1^i$, ..., $A_N^{i+1} \supseteq A_N^i$
- ightharpoonup Finally: $A_j := \bigcup_{i=1}^{\infty} A_i^j$
- ▶ Lemma: If $A \in \mathcal{J}$, each $A_j^i \in \mathcal{J}$ and $\lambda(A \setminus \bigcup_{i=1}^{\infty} A_i) = 0$ then $A_1, ..., A_n \in \mathcal{J}$

▶ Given ε > 0 choose $i = i(\varepsilon)$

- ▶ Given ε > 0 choose $i = i(\varepsilon)$
- ▶ Current (partial) pieces $A_1^i \subseteq A_1, \ldots, A_N^i \subseteq A_N$

- ▶ Given ε > 0 choose $i = i(\varepsilon)$
- ► Current (partial) pieces $A_1^i \subseteq A_1, \ldots, A_N^i \subseteq A_N$
- ► Regardless of future, ∀ *j*

$$N_{\varepsilon}(\partial A_{j})$$

- ▶ Given ε > 0 choose $i = i(\varepsilon)$
- ► Current (partial) pieces $A_1^i \subseteq A_1, \ldots, A_N^i \subseteq A_N$
- ► Regardless of future, ∀ *j*

$$N_{\varepsilon}(\partial A_j) \leqslant N_{\varepsilon}(\partial A_j^i) + \# \varepsilon$$
-cubes in $\mathbb{B}_{\varepsilon}(A) \setminus \bigcup_{j=1}^N A_j^i$

- ▶ Given ε > 0 choose $i = i(\varepsilon)$
- ► Current (partial) pieces $A_1^i \subseteq A_1, \ldots, A_N^i \subseteq A_N$
- ► Regardless of future, ∀ *j*

$$egin{array}{ll} N_{arepsilon}(\partial A_{j}) &\leqslant& N_{arepsilon}(\partial A_{j}^{i}) + \# arepsilon ext{-cubes in } \mathbb{B}_{arepsilon}(A)\setminus igcup_{j=1}^{N}A_{j}^{i} \ &\leqslant& N_{arepsilon}(\partial A_{j}^{i}) + rac{\lambda(\mathbb{B}_{arepsilon}(A)\setminus igcup_{k=1}^{N}A_{k}^{i})}{arepsilon^{k}} \end{array}$$

- ▶ Given ε > 0 choose $i = i(\varepsilon)$
- ▶ Current (partial) pieces $A_1^i \subseteq A_1, \ldots, A_N^i \subseteq A_N$
- ► Regardless of future, ∀ *j*

$$egin{array}{ll} N_{arepsilon}(\partial A_{j}) &\leqslant& N_{arepsilon}(\partial A_{j}^{i}) + \# arepsilon ext{-cubes in } \mathbb{B}_{arepsilon}(A)\setminus igcup_{j=1}^{N}A_{j}^{i} \ &\leqslant& N_{arepsilon}(\partial A_{j}^{i}) + rac{\lambda(\mathbb{B}_{arepsilon}(A)\setminus igcup_{k=1}^{N}A_{k}^{i})}{arepsilon^{k}} \end{array}$$

► A_j^i is an r_i -local function of A and $B \Rightarrow$

$$N_{\varepsilon}(\partial A_{j}^{i}) \leqslant 2^{d} \cdot (2r_{i}+1)^{d} \cdot N_{\varepsilon}(\partial A \cup \partial B)$$

► Flow: $f: E(\mathcal{G}) \to \mathbb{R}$ s.t. f(x, y) = -f(y, x)

- ▶ Flow: $f: E(\mathcal{G}) \to \mathbb{R}$ s.t. f(x, y) = -f(y, x)

- ► Flow: $f: E(\mathcal{G}) \to \mathbb{R}$ s.t. f(x, y) = -f(y, x)
- $ightharpoonup f^{\text{out}}(x) := \sum_{y} f(x, y)$
- ightharpoonup AB-flow: $f^{\text{out}} = -\mathbb{1}_A + \mathbb{1}_B$

- ► Flow: $f: E(\mathcal{G}) \to \mathbb{R}$ s.t. f(x, y) = -f(y, x)
- ightharpoonup AB-flow: $f^{\text{out}} = -\mathbb{1}_A + \mathbb{1}_B$
- ► Marks-Unger'17: \exists bounded integer-valued Borel AB-flow $\Rightarrow A \sim_{\mathcal{B}} B$

Bounded integer-valued AB-flow $\Rightarrow A \sim B$

► Aim: bounded integer-valued Borel AB-flow

- ► Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}

- ► Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - Inductively construct f_i:

- ► Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - ► Inductively construct *f_i*:
 - ightharpoonup augment f_{i-1} in each 2^i -cube

- ► Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - Inductively construct f_i:
 - ightharpoonup augment f_{i-1} in each 2^i -cube
 - ▶ average these over all 2^{id} choices of 2ⁱ-grids

- Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - Inductively construct f_i:
 - ightharpoonup augment f_{i-1} in each 2^i -cube
 - ightharpoonup average these over all 2^{id} choices of 2^{i} -grids
 - $f_{\infty} := \lim_{i \to \infty} f_i$

- Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - Inductively construct f_i:
 - ightharpoonup augment f_{i-1} in each 2^i -cube
 - ► average these over all 2^{id} choices of 2ⁱ-grids
 - $f_{\infty} := \lim_{i \to \infty} f_i$
- **Round** f_{∞} to integer-valued Borel flow g

- Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - ► Inductively construct f_i:
 - ightharpoonup augment f_{i-1} in each 2^i -cube
 - average these over all 2^{id} choices of 2ⁱ-grids
 - $f_{\infty} := \lim_{i \to \infty} f_i$
- **Round** f_{∞} to integer-valued Borel flow g
- ▶ Marks-Unger'17: \forall finite connected $S \subseteq \mathcal{G}$ one can make f_{∞} integer on

$$\partial S := \{ (\mathbf{x}, \mathbf{y}) \in E(\mathcal{G}) \cap (S \times S^c) \}$$

changing f_{∞} only near ∂S , by at most 3^d

- Aim: bounded integer-valued Borel AB-flow
- ▶ \exists bounded real-valued Borel AB-flow f_{∞} in \mathcal{G}
 - Inductively construct f_i:
 - ightharpoonup augment f_{i-1} in each 2^i -cube
 - average these over all 2^{id} choices of 2ⁱ-grids
 - $f_{\infty} := \lim_{i \to \infty} f_i$
- **Round** f_{∞} to integer-valued Borel flow g
- ▶ Marks-Unger'17: \forall finite connected $S \subseteq \mathcal{G}$ one can make f_{∞} integer on

$$\partial S := \{ (\mathbf{x}, \mathbf{y}) \in E(\mathcal{G}) \cap (S \times S^c) \}$$

changing f_{∞} only near ∂S , by at most 3^d

▶ Boykin-Jackson'07 ⇒ Borel toast

► Recall high-level strategy:

- Recall high-level strategy:
 - ► Each locally-defined piece A_i grows

- Recall high-level strategy:
 - ► Each locally-defined piece *A_i* grows
 - ► They exhaust *A* in measure

- Recall high-level strategy:
 - Each locally-defined piece A_i grows
 - ► They exhaust *A* in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable

- Recall high-level strategy:
 - Each locally-defined piece A_i grows
 - ► They exhaust *A* in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:

- Recall high-level strategy:
 - ► Each locally-defined piece *A_i* grows
 - ► They exhaust *A* in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:
 - ► Construct partial integer-valued flows g_i , i = 0, 1, ...

- Recall high-level strategy:
 - ► Each locally-defined piece *A_i* grows
 - They exhaust A in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:
 - ► Construct partial integer-valued flows g_i , i = 0, 1, ...
 - $ightharpoonup g_i$ is never overridden later

- Recall high-level strategy:
 - ► Each locally-defined piece *A_i* grows
 - They exhaust A in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:
 - ► Construct partial integer-valued flows g_i , i = 0, 1, ...
 - $ightharpoonup g_i$ is never overridden later
- ▶ Lemma: when rounding ∂S , it is enough to know only approximation f_m instead of f_∞ , m = m(A, B, S)

- Recall high-level strategy:
 - ► Each locally-defined piece *A_i* grows
 - They exhaust A in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:
 - ► Construct partial integer-valued flows g_i , i = 0, 1, ...
 - $ightharpoonup g_i$ is never overridden later
- ▶ Lemma: when rounding ∂S , it is enough to know only approximation f_m instead of f_∞ , m = m(A, B, S)
- Run Borel equidecomposition on the unmatched part...

- Recall high-level strategy:
 - \triangleright Each locally-defined piece A_j grows
 - ▶ They exhaust A in measure
 - ightharpoonup \Rightarrow final A_i is Jordan measurable
- In terms of flows:
 - ► Construct partial integer-valued flows g_i , i = 0, 1, ...
 - $ightharpoonup g_i$ is never overridden later
- ▶ Lemma: when rounding ∂S , it is enough to know only approximation f_m instead of f_∞ , m = m(A, B, S)
- Run Borel equidecomposition on the unmatched part.

► Circle squaring with dim_□ A_i < 1.01 ?

▶ Circle squaring with $\dim_{\square} A_i < 1.01$? Exactly 1 ?

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ?

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? **B**(open sets) ?

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? **B**(open sets) ?
- Minimum number of pieces for circle squaring ?

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger'17: ≤ 10²⁰⁰

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger'17: ≤ 10²⁰⁰
 - Lower bound:

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger'17: ≤ 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger'17: ≤ 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)

- Circle squaring with dim_□ A_i < 1.01 ? Exactly 1 ?</p>
- ► Circle squaring with F_{σ} -sets ? B(open sets) ?
- Minimum number of pieces for circle squaring ?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger'17: ≤ 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)
- ▶ Analogous Borel results for e.g. $SO(3) \curvearrowright \mathbb{S}^2$?

Discrete circle squaring (by András Máthé)

580 × 580 torus, 5 pieces, working modulo 1

Thank you!